where A and B are events.
- P(A) and P(B) are the probabilities of A and B without regard to each other.
- P(A | B), a conditional probability, is the probability of observing event A given that B is true.
- P(B | A) is the probability of observing event B given that A is true.
贝叶斯定理是关于随机事件A和B的条件概率的一則定理。
其中P(A|B)是在B发生的情况下A发生的可能性。
在贝叶斯定理中,每个名词都有约定俗成的名称:
- P(A)是A的先驗概率或(或边缘概率)。之所以稱為"先驗"是因為它不考慮任何B方面的因素。
- P(A|B)是已知B發生后A的條件概率,也由于得自B的取值而被稱作A的后驗概率。
- P(B|A)是已知A發生后B的條件概率,也由于得自A的取值而被稱作B的后驗概率。
- P(B)是B的先驗概率或邊緣概率,也作標准化常量(normalizing constant)。
按這些術語,贝叶斯定理可表述為:
- 后驗概率 = (相似度*先驗概率)/標准化常量
也就是說,后驗概率与先驗概率和相似度的乘積成正比。
另外,比例P(B|A)/P(B)也有時被稱作標准相似度(standardised likelihood),贝叶斯定理可表述為:
条件概率(英语:conditional probability)就是事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。
联合概率表示两个事件共同发生的概率。A与B的联合概率表示为或者
。
边缘概率是某个事件发生的概率。边缘概率是這樣得到的:在聯合概率中,把最終結果中不需要的那些事件合并成其事件的全概率而消失(對离散隨机變量用求和得全概率,對連續隨机變量用積分得全概率)。這稱為邊緣化(marginalization)。A的边缘概率表示为P(A),B的边缘概率表示为P(B)。
在同一个样本空间Ω中的事件或者子集A与B,如果随机从Ω中选出的一个元素属于B,那么这个随机选择的元素还属于A的概率就定义为在B的前提下A的条件概率。从这个定义中,我们可以得出
P(A|B) = |A∩B|/|B|
分子、分母都除以|Ω|得到
That is, P(A|B) ≈ P(B|A) only if P(B)/P(A) ≈ 1, or equivalently, P(A) ≈ P(B).
Alternatively, noting that A ∩ B = B ∩ A, and applying conditional probability:
Rearranging gives the result.
- P(D)代表雇员吸毒的概率,不考虑其他情况,该值为0.005。因为公司的预先统计表明该公司的雇员中有0.5%的人吸食毒品,所以这个值就是D的先验概率。
- P(N)代表雇员不吸毒的概率,显然,该值为0.995,也就是1-P(D)。
- P(+|D)代表吸毒者阳性检出率,这是一个条件概率,由于阳性检测准确性是99%,因此该值为0.99。
- P(+|N)代表不吸毒者阳性检出率,也就是出错检测的概率,该值为0.01,因为对于不吸毒者,其检测为阴性的概率为99%,因此,其被误检测成阳性的概率为1-99%。
- P(+)代表不考虑其他因素的影响的阳性检出率。该值为0.0149或者1.49%。我们可以通过全概率公式计算得到:此概率 = 吸毒者阳性检出率(0.5% x 99% = 0.495%)+ 不吸毒者阳性检出率(99.5% x 1% = 0.995%)。P(+)=0.0149是检测呈阳性的先验概率。用数学公式描述为:
根据上述描述,我们可以计算某人检测呈阳性时确实吸毒的条件概率P(D|+):
Despite the apparent accuracy of the test, if an individual tests positive, it is more likely that they do not use the drug than that they do. This again illustrates the importance of base rates, and how the formation of policy can be egregiously misguided if base rates are neglected.
This surprising result arises because the number of non-users is very large compared to the number of users; thus the number of false positives (0.995%) outweighs the number of true positives (0.495%). To use concrete numbers, if 1000 individuals are tested, there are expected to be 995 non-users and 5 users. From the 995 non-users, 0.01 × 995 ≃ 10 false positives are expected. From the 5 users, 0.99 × 5 ≃ 5 true positives are expected. Out of 15 positive results, only 5, about 33%, are genuine.
Suppose we want to know a person's probability of having cancer, but we know nothing about him or her. Despite not knowing anything about that person, a probability can be assigned based on the general prevalence of cancer. For the sake of this example, suppose it is 1%. This is known as the base rate or prior probability of having cancer. "Prior" refers to the time before being informed about the particular case at hand.
Next, suppose we find out that person is 65 years old. If we assume that cancer and age are related, this new piece of information can be used to better assess that person's chance of having cancer. More precisely, we'd like to know the probability that a person has cancer when it is known that he or she is 65 years old. This quantity is known as the current probability, where "current" refers to upon finding out information about the particular case at hand.
In order to apply knowledge of that person's age in conjunction with Bayes' Theorem, two additional pieces of information are needed. Note, however, that the additional information is not specific to that person. The needed information is as follows:
- The probability of being 65 years old. Suppose it is 0.2%
- The probability that a person with cancer is 65 years old. Suppose it is 0.5%. Note that this is greater than the previous value. This reflects that people with cancer are disproportionately 65 years old.
Knowing this, along with the base rate, we can calculate that a person who is age 65 has a probability of having cancer equal to
挑戰者B不知道原壟斷者A是屬於高阻撓成本類型還是低阻撓成本類型,但B知道,如果A屬於高阻撓成本類型,B進入市場時A進行阻撓的概率是20%(此時A為了保持壟斷帶來的高利潤,不計成本地拼命阻撓);如果A屬於低阻撓成本類型,B進入市場時A進行阻撓的概率是100%。
博弈開始時,B認為A屬於高阻撓成本企業的概率為70%,因此,B估計自己在進入市場時,受到A阻撓的概率為:
0.7×0.2+0.3×1=0.44
0.44是在B給定A所屬類型的先驗概率下,A可能採取阻撓行為的概率。
當B進入市場時,A確實進行阻撓。使用貝葉斯法則,根據阻撓這一可以觀察到的行為,B認為A屬於高阻撓成本企業的概率變成A屬於高成本企業的概率=0.7(A屬於高成本企業的先驗概率)×0.2(高成本企業對新進入市場的企業進行阻撓的概率)÷0.44=0.32
根據這一新的概率,B估計自己在進入市場時,受到A阻撓的概率為:
0.32×0.2+0.68×1=0.744
如果B再一次進入市場時,A又進行了阻撓。使用貝葉斯法則,根據再次阻撓這一可觀察到的行為,B認為A屬於高阻撓成本企業的概率變成
A屬於高成本企業的概率=0.32(A屬於高成本企業的先驗概率)×0.2(高成本企業對新進入市場的企業進行阻撓的概率)÷0.744=0.086
這樣,根據A一次又一次的阻撓行為,B對A所屬類型的判斷逐步發生變化,越來越傾向於將A判斷為低阻撓成本企業了。
以上例子表明,在不完全信息動態博弈中,參與人所採取的行為具有傳遞信息的作用。儘管A企業有可能是高成本企業,但A企業連續進行的市場進入阻撓,給B企業以A企業是低阻撓成本企業的印象,從而使得B企業停止了進入地市場的行動。
應該指出的是,傳遞信息的行為是需要成本的。假如這種行為沒有成本,誰都可以效仿,那麼,這種行為就達不到傳遞信息的目的。只有在行為需要相當大的成本,因而別人不敢輕易效仿時,這種行為才能起到傳遞信息的作用。